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Abstract

Objectives The transdermal iontophoretic delivery of a novel series of 2- aminotetralins
and chromanamine-based dopamine agonists was investigated in vitro.
Methods Systematic structural modifications allowed us to investigate their effect on
solubility in the donor phase and iontophoretic delivery across human skin. Transport
profiles were analysed with nonlinear mixed effect modelling, utilizing an extension to an
existing compartmental model. Furthermore, relationships between physicochemical
properties and transport parameters were addressed.
Key findings A solubility increase was observed: 5,6-di-OH-DPAT < 5-OH-MPAT <
5-OH-EPAT < 8-OH-DPAC. The structure significantly affected the iontophoretic delivery
across human stratum corneum and dermatomed human skin with the highest flux for 5-OH-
EPAT and 5-OH-MPAT. The extended model with two skin release constants (KR1, KR2)
described more adequately iontophoretic transport profiles than the existing model with one
release constant. The extended model suggested two parallel transport pathways during
current application. Across human stratum corneum, the electrophoretic mobility, measured
with capillary electrophoresis, showed a linear relationship with the electromigrative flux
and the zero-order iontophoretic mass input into the skin (I0).
Conclusions Combining transport parameters (I0, KR1 and KR2), predicted from
physicochemical properties, with compartmental modelling provided a powerful tool to
simulate iontophoretic transport profiles for screening potential candidates and designing
experiments.
Keywords dopamine agonists; iontophoresis; modelling; transdermal; transport pathway

Introduction

Transdermal iontophoresis enhances the delivery of small charged solutes across the
skin by application of a small current (≤ 0.5 mA/cm²) across this membrane. Important
advantages of transdermal delivery are circumvention of the hepatic first-pass effect and a
continuous administration of the drug. A particular advantage of iontophoresis is the
possibility to adjust the rate of delivery by changing the current density.[1] For the
symptomatic treatment of Parkinson’s disease the current strategy is to administer
therapeutic agents in a continuous manner to reduce the induction of motor fluctuations
after long-term use.[2–4] Most of the dopamine agonists have a very narrow therapeutic
window, which demands for an accurate individualized titration, adjusted to the needs of
the therapy.[5,6] For these reasons, the in-vitro and in-vivo iontophoretic delivery of
dopamine agonists, such as apomorphine, ropinirole, 5-OH-DPAT and rotigotine, have
been investigated intensively.[7–16]

To improve the transport efficiency and consequently the therapeutic treatment of
Parkinson’s disease, a good understanding is required about the structure–transport
relationship. However, with respect to this class of drugs little is known about the
structure–transport relationship. In this study, the in-vitro iontophoretic delivery of a new
series of dopamine agonists, which were selected based on their potency and their
molecular structure, has been investigated.[17–23] The small structural differences allowed
us to investigate in detail the influence of molecular structure and related physicochemical
properties of the dopamine agonists on the iontophoretic transport efficiency.
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Over the years several studies have focused on selecting
the key physicochemical properties that determine the
efficiency of transdermal iontophoretic delivery. It has been
reported that the size of the solute, expressed as molecular
weight (MW) or molecular volume (MV), is an important
descriptor with a higher transport for smaller molecules.[24–26]

Furthermore, an increase in charge/MW ratio resulted in an
increase in transdermal electromigrative flux, as was observed
for a series of peptides.[27] In a follow up study by Abla
et al.[28] the electrophoretic mobility, measured by capillary
zone electrophoresis, provided an estimation of the electro-
migrative flux. Finally, the lipophilicity of the transported
molecules also affected the transdermal iontophoretic trans-
port, however the relationship with the corresponding
transport efficiency was not as straightforward as with passive
diffusion.[29,30]

Most of these physicochemical property–transport
relationships use a single parameter to describe the
transdermal iontophoretic flux. As a single end-point the
flux at the end of the iontophoresis period or the steady-
state flux and lag time are often selected. However, in these
approaches, the information on the shape of the iontophor-
esis transport curve is neglected, which makes extrapola-
tion towards the in-vivo situation more difficult. The
mathematical models introduced by Nugroho et al.[16,31,32]

were designed to overcome the aforementioned disadvan-
tages and to make the extrapolation from the in-vitro to
in-vivo transport studies more reliable. The proposed
models were based on a commonly used assumption for
iontophoresis, namely a constant mass input into the skin
during iontophoresis due to the constant iontophoretic
driving force resulting from the application of a constant
current. An adapted model, based on the compartmental
models introduced by Nugroho et al.,[16,31] has been
presented and applied to describe the iontophoretic flux
profile for this series of dopamine agonists. In this study the
relationship between the physicochemical properties and
the transport has been addressed, using the electromigrative
flux as single end-point and using the adapted model
describing the total iontophoretic flux profile.

The objectives of this study were: to investigate the
transdermal iontophoretic delivery in vitro of a new series of
dopamine agonists; to evaluate the adapted mathematical
compartmental model to describe the in-vitro iontophoretic
delivery of these dopamine agonists; and to study the relation-
ships between the physicochemical properties (clogP, electro-
phoretic mobility and MW) of the molecules and the
electromigrative flux (EM-flux) and the parameter estimates
(zero-order mass input from donor to skin and skin release
constants), using the adapted model.

Materials and Methods

Materials

The 2-aminotetralins 5-hydroxy-2-(N-ethyl,N-n-propylamino)
tetralin (5-OH-EPAT.HBr), 5-hydroxy-2-(N-n-propylamino)
tetralin (5-OH-MPAT.HBr), 5,6-di-hydroxy-2-(N-n-propyla-
mino)tetralin (5,6-di-OH-MPAT.HBr), 5,6-di-hydroxy-2-
(N,N-di-n-propylamino)tetralin (5,6-di-OH-DPAT.HBr),

5-hydroxy-2-(N,N,-di-n-propylamino)tetralin (5-OH-DPAT.
HBr) and the chromanamine 8-hydroxy-3-(N,N,-di-n-propyl-
amino)chroman (8-OH-DPAC.HBr) (Figure 1; purity > 95%,
determined with HPLC and NMR) were synthesized at the
Department of Medicinal Chemistry of the University of
Groningen, Groningen, The Netherlands. Silver, silver chlor-
ide (purity > 99.99%), trypsin (type III from bovine pancreas)
and trypsin inhibitor (type II-S from soybean) were obtained
from Sigma-Aldrich (Zwijndrecht, The Netherlands). Para-
cetamol (acetaminophen) was purchased from Brocacef BV
(Maarssen, The Netherlands) and D-Mannitol was obtained
from BDH Laboratory supplies (Poole, UK). Spectra/Por RC
dialysis membrane disks (cut-off value of 6000–8000 Da)
were purchased from Spectrum Laboratories, Inc (Rancho
Dominquez, CA, USA). Tetrahydrofuran (THF, stabilized,
purity > 99.8%) was obtained from Biosolve (Valkenswaard,
The Netherlands). Triethylamine (TEA, purity > 99%) was
obtained from Acros Organics (Geel, Belgium). All other
chemicals and solvents were of analytical grade. All solutions
were prepared in Millipore water with a resistance of more
than 18 MΩ/cm.
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Figure 1 The chemical structures of different dopamine agonists
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Maximum solubility

The solubility studies of the different compounds were carried
out as described elsewhere.[14] Briefly, each compound was
solubilized in citric buffer 5 mM, pH 5 + 4 g/l NaCl + 23.1 g/l
D-mannitol. Subsequently the pH in each test tube was
adjusted to pH 5 with 1 M NaOH or 1 M HCl under continuous
shaking. Each solution was shaken for 48 h, after which the
solution was centrifuged and filtered. The concentration in
each solution was determined with HPLC.

Stability of 5,6-di-OH-MPAT and 5,6-di-OH-DPAT

The oxidation of 5,6-di-OH-MPAT and 5,6-di-OH-DPATwas
investigated under various conditions. At the starting point
0.1 mg/ml 5,6-di-OH-DPAT and 5,6-di-OH-MPAT were
dissolved in the buffer solution. The solutions were con-
tinuously stirred and kept constant at the desired temperature,
using a thermostat-controlled water bath. If required a circular
sheet of human stratum corneum (ø = 18 mm) was added to
the solution and a current of 320 mA was applied. At regular
intervals samples were taken from the solution and diluted in
Millipore water, containing 2.86% v/v antioxidant solution
(0.5% w/v ascorbic acid 0.05% w/v EDTA and 25% v/v
H3PO4) to prevent the molecule from oxidizing further.
The amount of remaining drug was quantified by RP-HPLC
(see Analytical methods).

Capillary electrophoresis

Previous studies have shown that the electrophoreticmobility at
7.4 was related to the iontophoretic mobility during transdermal
transport.[28,33] The electrophoretic mobility of various com-
pounds in this study was investigated with capillary electro-
phoresis. These experiments were performed using an HPCE
system (model number: G1600OAX, Agilent Technologies
Santa Clara, CA, USA) equipped with an on-column diode-
array detector, an autosampler, and a 30 kV power supply.
Capillary electrophoresis Chemstation (Agilent Technologies)
was used for capillary electrophoresis control, data acquisition
and handling. The separation was performed in a 50-μm fused-
silica capillary 48.5 cm in total length, and 40 cm to the UV
detector. All experiments were carried out in cationicmode (the
anode at the inlet and cathode at the outlet). The concentration
of the samples was 0.5 mM in water and dimethyl sulfoxide
(DMSO) in water (0.5% v/v) was added to the solution as a
marker for the electroosmotic flow. The electrophoretic
mobility was determined using a phosphate buffer pH 7.4
(Na2HPO4 5.82 g/l; NaH2PO4 5.1 g/l) as electrolyte solution
(mobile phase). UV detectionwas applied at 220 and 278 nm for
the detection of DMSO and the molecule, respectively. The
capillarywas preconditioned as follows: 5 min 0.1 MNaOH+10
min electrolyte solution.The samplewas injectedover 5 s under a
pressure of 50 mbar. Every samplewasmeasured three times and
for every analysis a fresh electrolyte solution was used. The
effective electrophoreticmobility (meff)was calculatedas follows:

�ef f ¼ �obs−�EOF ¼ LtotLef f

V
ð 1

tobs
Þ−ð 1

tEOF
Þ

� �
ð1Þ

with mobs and mEOF as the electrophoretic mobility of the
compound and the electroosmotic marker DMSO, respectively.

Ltot and Leff are the total distance of the capillary and the distance
from the inlet to the detection point, respectively. tobs and tEOF
are the time required to reach the detection point for the analyte
and the electroosmotic marker DMSO, respectively, and V is the
applied voltage.[34,35]

In-vitro transport studies

The preparation of dermatomed human skin and human stratum
corneum was performed according to a method described
previously.[15] All transport experiments were carried out as
described elsewhere.[15] The donor formulation (citric buffer
5 mM, pH 5, NaCl 4 g/l, D-mannitol 23.1 g/l), containing the
solute, was added to the anodal chamber. The cathodal chamber
was filled with phosphate-buffered saline (PBS; pH 7.4, NaCl
8 g/l, Na2HPO4 2.86 g/l, KH2PO4 0.2 g/l, KCl 0.19 g/l). The
acceptor phase, maintained at 32°C, was continuously perfused
with PBS pH 7.4 at a flow rate of 7.0 ml/h. The following
protocol was used: 6 h passive diffusion + 9 h iontophoresis
(500 mA/cm²) + 5 h passive diffusion. Samples were collected
every hour with an automatic fraction collector (ISCORetriever
IV, Beun De Ronde BV, Abcoude, The Netherlands). The
specific conditions of the individual transport studies are
described below. To prevent oxidation of 5,6-di-OH-DPAT and
5,6-di-OH-MPAT after transdermal transport and before
analysis, 200 ml antioxidant solution (EDTA (Titriplex III):
0.5 g/l, Na2S2O5 5 g/l, H3PO4 (85 wt % in H2O) 294 ml/l) was
added to every collecting tube in the fraction collector.

Total iontophoretic flux
The iontophoretic delivery of 5-OH-EPAT, 5-OH-MPAT,
5,6-di-OH-MPAT and 5,6-di-OH-DPAT and 8-OH-DPAC
across human stratum corneum was studied at 3.9 mM. Two
additional concentrations (1.5 and 7.0 mM) of 5-OH-EPAT
and 5-OH-MPAT were studied. For 5-OH-EPAT, 5-OH-
MPAT, 5,6-di-OH-DPAT, 5-OH-DPAT and 8-OH-DPAC,
transport studies across dermatomed human skin were
performed using a donor concentration of 3.9 mM.

Electroosmotic flux
According to the Nernst-Planck equation the total flux (Jtot)
consists of three transport mechanisms:

JTot ¼ JEM þ JEO þ JP ð2Þ
with the electromigrative flux (JEM) and the electroosmotic flux
(JEO) as the principal driving mechanisms for iontophoresis of
charged species. The passive flux (JP) is often negligible. The
electroosmotic flux across human stratum corneum was
investigated during iontophoretic transport of 5-OH-EPAT,
5-OH-MPAT, 5,6-di-OH-DPAT and 8-OH-DPAC (3.9 mM).
Paracetamol (15 mM) was added to the donor phase as a marker
for the electroosmotic flux. The electroosmotic flux was
calculated, using the following equation, assuming a similar
electroosmotic transport for the analogues and paracetamol:

JEO ¼ Jpar

Cpar

xCm ð3Þ

with Jpar as the flux of paracetamol andCm andCpar as the donor
concentration of the molecule and paracetamol, respectively.
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Compartmental modelling

The iontophoretic transport in vitro of different molecules was
analysed using nonlinear mixed effects modelling. The starting
point of the models was a zero-order mass transport from the
donor solution into the skin during and after iontophoresis. In
this study an extension to the basic model has been presented.

Basic model in vitro
An extensive explanation and description of the basic model
is presented elsewhere.[31] Briefly, the basic model assumes a
constant rate of mass input from the donor into the skin
during iontophoresis due to a constant iontophoretic driving
force. Based on this assumption the equations to describe in-
vitro iontophoretic transport during (eqn 4) and after current
application (eqn 6) are:

JðtÞ ¼ I0

S
ð1−e−KR:ðt−tLÞÞ ð4Þ

Jss ¼ I0

S
ð5Þ

JðtÞ ¼ PPI

S
ð1−e−KR:ðt−TÞÞ þ I0

S
ð1−e−KR:ðT−tLÞÞ:e−KRðt−TÞ ð6Þ

where J(t) is the flux at time t and S is the diffusion area, KR

is a first-order skin release rate constant, I0 is the zero-order
iontophoretic mass transfer from the donor compartment into
the skin compartment during current application, tL is the
kinetic lag time parameter, introduced to address the time
required for drug molecules to enter the skin compartment,
T is time of current application, Jss is the flux at steady state
and PPI is the zero-order drug input due to the passive driving
force post-iontophoresis.

Extended model in vitro
As observed from the iontophoretic flux profile of the
compounds presented in this paper, the flux increased in time
during the current application. This suggested that two
transport routes were involved in the iontophoretic delivery,
linked in parallel. The observed flux is the total amount of
drug released in the acceptor compartment. In analogy to the
basic model the zero-order mass transfer from the donor into
the skin remains constant, however the first-order release
constant from the skin to the acceptor will be different for
both transport mechanisms. Therefore the iontophoretic flux
in vitro during iontophoresis (t ≤ T) can be described by the
equation:

JðtÞ ¼ I0

S
ð1−e−KR1:ðt−tLÞÞ þ I0

S
ð1−e−KR2:ðt−tLÞÞ ð7Þ

Jss ¼ 2 � I0
S

ð8Þ

with KR1 and KR2 as the release constants to describe both
transport routes. During the post-iontophoresis period

(t > T) only one release constant appeared to be sufficient
to describe the passive flux, resulting in the following
equation:

JðtÞ ¼ PPI

S
ð1−e−KR2:ðt−TÞÞ þ I0

S
ð1−e−KR1:ðT−tLÞÞ

�

þ I0

S
ð1−e−KR2:ðT−tLÞÞ

�
: e−KR2ðt−TÞ

ð9Þ

Curve fitting and model evaluation
Fitting the data was performed using the subroutines
ADVAN6 TOL = 5 from PREDPP in NONMEM (NONMEM
version VI). Interindividual variability was modelled using an
exponential error model and the residual error was character-
ized by an exponential and/or additive error model. The
estimation of the population parameters was performed using a
conventional first-order method.[36]

The extended model was evaluated in comparison with
the basic model. The statistical analysis was based on the
objective function, which is defined as 2-times the logarithm
of the likelihood. If the objective function of the extended
model with two release constants during the current
application decreases with a value of 4 (or more) compared
with the objective function of the basic model, the extended
model is significantly better (P < 0.05; Chi-square test).

Analytical method

Different HPLC methods were developed to analyse the
respective molecule and paracetamol by RP-HPLC. The
aminotetralins and the chromanamine were detected using a
scanning fluorescence detector (Waters 474, Millipore,
Milford, MA, USA) and paracetamol was detected using a
UV detector (Dual λ Absorbance Detector 2487, Waters,
Milford, USA). The column, the composition of the mobile
phase, the volume of injection and the respective excitation
and emission wavelengths to analyse the different com-
pounds are depicted in Table 1. The flow rate was set to
1.0 ml/min. Calibration curves showed a linear response
between 100 and 40 000 ng/ml (r2 > 0.99). The limit of
detection (LOD) and limit of quantification (LOQ) for these
HPLC methods can also be found in Table 1.

Data analysis

All data are presented as mean ± standard deviation (SD)
or as mean ± standard error of the mean (SEM). When a
statistical analysis was performed comparing only two
groups, a Student’s t-test was used. When three or more
groups were compared, a one-way analysis of variance was
executed. Comparing the effect of two factors simulta-
neously was performed using two-way analysis of variance.
If the overall P value was less than 0.05, a Bonferonni post-
test was applied to compare different groups. Statistical
tests were performed by using GraphPad Prism version
5.00 for Windows (GraphPad Software, San Diego, CA,
USA). For all statistical analysis a significance level of
P < 0.05 was used.
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Results

Maximum solubility

The maximum solubility of the different compounds was
determined in citric buffer 5 mM at pH 5 in the presence of
68 mM NaCl and D-mannitol as this was the composition of the
donor solution used for transport studies. The results of the
solubility assay can be found in Table 2.[37–39] The solubility
data of rotigotine.HCl and 5-OH-DPAT, adapted from the
literature, were added to Table 2 for comparison. An increase in
solubility was observed ranking the molecules in the following
order: rotigotine < 5,6-di-OH-DPAT < 5-OH-DPAT < 5-OH-
MPAT < 5-OH-EPAT < 8-OH-DPAC. Furthermore the rela-
tive hydrophilicity of the different analogues, expressed with
the octanol–water partition coefficient, clogP, was calculated/
computed using the ALOGPS 2.1 webservice.[37–39] The results
are also provided in Table 2.

Stability of 5,6-di-OH-MPAT and 5,6-di-OH-DPAT

The catechol group of 5,6-di-OH-MPAT and 5,6-di-OH-
DPAT was expected to be susceptible to photo-, auto- and
chemical oxidation to ortho-semiquinone and subsequently to
ortho-quinone, similar to apomorphine, another catechola-
mine.[41] Therefore the stability of these two molecules was

investigated under various conditions, mimicking the differ-
ent compartments during in-vitro iontophoretic transport.
Figure 2, evaluating the % remaining catechol after 24 and
48 h, shows that 5,6-di-OH-MPAT remained stable at pH 5 at
room temperature. Increasing only the temperature had little
influence on the stability: after 48 h the remaining 5,6-di-
OH-MPAT was 95.9 and 87.7 ± 5.6% at room temperature
and 32°C, respectively. Addition of human stratum corneum
and application of a current decreased the remaining drug
from 96.2 ± 3.1 to 90.2% after 24 h. In analogy to other
catecholamines, the pH of the solution had a strong influence
on the stability of the two compounds.[41,42] At pH 5 5,6-di-
OH-MPAT and 5,6-di-OH-DPAT were more stable than at
pH 6. Increasing the pH to 7.4 resulted in an even more
pronounced degradation of 5,6-di-OH-MPAT.

Capillary electrophoresis

To assess the electrophoretic mobility of the various com-
pounds, capillary electrophoresis was performed (Table 2).
The electrophoretic mobility of the various compounds
increased in the following order: rotigotine < 5,6-di-OH-
DPAT < 5,6-di-OH-MPAT < 8-OH-DPAC < 5-OH-DPAT <
5-OH-EPAT < 5-OH-MPAT.

Table 1 The HPLC method used for the various 2-aminotetralins and chromanamine-based dopamine agonists investigated

Compound Column Mobile phase Fluorescence

Composition (% v/v) TEA

(mM)

injection

volume (ml)
λex (nm) λem (nm) LOD

(ng/ml)

LOQ

(ng/ml)

5-OH-EPAT Superspher

RP-select B C8

Ace 50 mM/THF 95/5 30 20 275 302 21.0 35.0

5-OH-MPAT Inertsil5 ODS-2 Ace 100 mM/ACN 90/10 15 50 280 310 8.2 12.3

5,6-di-OH-DPAT Superspher

RP-select B C8

Ace 50 mM/THF 97/3 15 200 276 305 61.4 115.9

5,6-di-OH-MPAT Inertsil5 ODS-2 Ace 50 mM/THF 96/4 15 50 280 310 90.7 150.5

8-OH-DPAC Superspher

RP-select B C8

Ace 50 mM/THF 95 / 5 30 50 277 306 29.9 44.9

Paracetamol a

aMobile phase, column, limit of detection (LOD) and limit of quantification (LOQ) are dependent on the compound co-analysed; UV-detection,

λ = 243 nm. λem, emission wavelength; λex, excitation wavelength; Ace, acetate buffer pH 3.6; ACN, acetonitrile; TEA, triethylamine; THF,

tetrahydrofuran.

Table 2 The physicochemical properties of the various 2-aminotetralins and chromanamine-based dopamine agonists investigated

Compound Molecular weight (g/mol) clogPc Solubility (mM) Electrophoretic mobility

(mem) � 10-4 (cm2/s/V) ± SD

1 5-OH-EPAT 233.36 3.71 111.7 1.84 ± 0.01

2 5-OH-MPAT 205.30 2.93 93.1 1.88 ± 0.00

3 5,6-di-OH-DPAT 263.38 3.74 44.2 1.56 ± 0.01

4 5,6-di-OH-MPAT 221.30 2.5 ND 1.61 ± 0.01

5 8-OH-DPAC 249.36 3.4 282.5 1.64 ± 0.01

6 5-OH-DPAT 247.38 4.15 56.7a 1.76 ± 0.01

7 Rotigotine 315.48 4.82 7.1b 1.49 ± 0.04

The molecular weight and the calculated logP (clogP) are presented together with the solubility in a citric buffer 5 mM pH 5, containing 4 g/l NaCl and

23.1 g/l D-mannitol, and the electophoretic mobility, determinedwith capillary electrophoresis. The solubility of 5-OH-DPAT and rotigotine, obtained from

literature, are added to the table for comparison. a,bValue adapted from literature.[14,40] cclogPwas calculated usingALOGPS 2.1.[37–39] ND, not determined.
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Iontophoretic transport

Total transport across human stratum corneum
and dermatomed human skin
Transport studies with the dopamine agonists at 3.9 mM

were performed to compare the iontophoretic delivery of
the various compounds. The different flux profiles of the
analogues across human stratum corneum and dermatomed
skin are depicted in Figure 3a and b, respectively. The flux of
the different compounds was evaluated statistically after 9 h
of iontophoresis (current density was 500 mA/cm²). Across
stratum corneum one-way analysis of variance showed an
overall significant difference in the flux of the different
compounds (P < 0.0001). The observed flux after 9 h
increased in the following order: 5,6-di-OH-MPAT (134.5 ±
12.9 nmol/cm²/h) < 5,6-di-OH-DPAT (175.0 ± 15.9 nmol/
cm²/h) < 8-OH-DPAC (175.9 ± 18.9 nmol/cm²/h) < 5-OH-
DPAT (207.7 ± 38.0 nmol/cm²/h) < 5-OH-MPAT (219.7 ±
31.4 nmol/cm²/h) < 5-OH-EPAT (247.7 ± 12.1 nmol/cm²/h).
In a follow up study two additional concentrations (1.5 and
7.0 mM) of 5-OH-MPAT and 5-OH-EPAT were investigated.
Comparing the flux of 5-OH-MPAT and 5-OH-EPAT after 9 h
of iontophoresis at 1.5 (99.6 ± 15.9 vs 68.7 ± 22.0 nmol/cm²/h),
3.9 mM (see above) and 7.0 mM (404.9 ± 72.9 vs 354.2 ± 78.1
nmol/cm²/h) showed no significant difference (two-way
analysis of variance; P > 0.05) (Figure 3c). A similar trend
was seen for iontophoretic transport studies across dermatomed
skin: 8-OH-DPAC (168.2 ± 13.2 nmol/cm²/h) < 5,6-di-OH-
DPAT (175.2 ± 25.9 nmol/cm²/h) < 5-OH-DPAT (193.0 ±
19.9 nmol/cm²/h) < 5-OH-EPAT (199.8 ± 8.0 nmol/cm²/h)

< 5-OH-MPAT (241.8 ± 11.2 nmol/cm²/h). A significant dif-
ference could be observed between the fluxes of the different
compounds (one-way analysis of variance; P < 0.05).

Electroosmotic contribution across human
stratum corneum
Paracetamol (15 mM) was added to the donor solution to
investigate the electroosmotic flow across human stratum
corneum during iontophoretic transport. The resulting
electroosmotic contribution, calculated using equation 3,
expressed as % of the total flux, is depicted in Figure 4.
A significantly higher electroosmotic contribution was
observed when 5,6-di-OH-DPAT (12.1 ± 3.4%) was trans-
ported through stratum corneum, compared with the other
compounds 5-OH-EPAT (4.5 ± 0.9%), 5-OH-MPAT (4.6 ±
1.4%) and 8-OH-DPAC (6.1 ± 0.4%) (one-way analysis of
variance, Bonferroni post test; P < 0.01).

Model evaluation

The iontophoretic transport of the different compounds was
fitted using the basic and extended model. The basic model
assumes a constant input during iontophoresis with one skin
release constant KR. As an example the iontophoretic flux of
8-OH-DPAC (3.9 mM) across human stratumcorneum is shown
in Figure 5. The iontophoretic transport of 3.9 mM 8-OH-DPAC
(open circle), together with the model predictions of the basic
model (dashed line) clearly showed that the basic model did not
fit to the experimental data. For this reason we employed the
extended model with two release constants, KR1 and KR2. The
extended model described more adequately the flux of the drug
than the basic model (Figure 5, solid line). This graphical
analysis was performed for all compounds across dermatomed
human skin and stratum corneum. The majority of the
individual fits showed an improvement when using the
extended model. The two models were also evaluated
statistically by comparison of the objective function of the
models. Except for rotigotine across dermatomed skin and
5,6-di-OH-MPAT across stratum corneum, in all cases the
objective function decreased with a value larger than 4. This
indicated that although an extra parameter (KR2) was added to
the model, a clear improvement in fitting the iontophoretic
transport across human sttatum corneum and dermatomed skin
was obtained (P < 0.05; Chi-square test). A model using two
zero-ordermass input rates (I0) or an additional release constant
(KR3) did not improve data fitting.

Discussion

In this study, the transdermal iontophoretic delivery of a
series of 2-aminotetralins and a chromanamine (8-OH-
DPAC) has been presented. The systematic structural
differences of these compounds allowed us to investigate
the effect of molecular structure on the solubility and on
iontophoretic delivery efficiency.

Solubility

The differences in structure affected the solubility of the
various compounds greatly. Compared with 5-OH-DPAT,
approximately a twofold higher solubility was observed for
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5-OH-EPAT and 5-OH-MPAT, indicating that decreasing the
length of the alkyl side chain on the nitrogen group improved
the solubility of the compound, most probably due to

reduction in lipophilicity and an increase in chargeability
of the nitrogen group. Furthermore for 8-OH-DPAC almost
a fivefold higher solubility was observed compared with
5-OH-DPAT. This demonstrated that replacement of the
tetrahydronaphthalene moiety, present in the structure of
5-OH-DPAT, by a chroman moiety (as in 8-OH-DPAC)
increased the solubility. In contrast, 5,6-di-OH-DPAT
showed a reduced solubility, which could be explained by
the formation of intermolecular hydrogen bridges, decreasing
its water solubility.

Efficiency of iontophoretic transport

Small structural changes influenced the transport efficiency of
the different analogues across human stratum corneum and
dermatomed skin significantly. Although steady state had not
been reached after 9 h of current application, a clear difference
could be observed at this time point. Despite the increase in
hydrophilicity of 5,6-di-OH-MPAT and 5,6-di-OH-DPAT by
introducing an extra oxygen on the phenyl ring, the
iontophoretic flux reduced, compared with 5-OH-MPAT and
5-OH-DPAT. It has been reported that an increase in molecular
volume results in a decrease in total iontophoretic flux, but in an
increase in electroosmotic contribution.[24,43] The significantly
higher electroosmotic contribution for 5,6-di-OH-DPAT might
have been due to an increased molecular volume, caused by
intermolecular hydrogen bonds, which would also account for
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the reduced iontophoretic flux. Decreasing the alkyl length of
one side chain on the nitrogen group from propyl (5-OH-
DPAT) to ethyl (5-OH-EPAT) or further to a hydrogen (5-OH-
MPAT) resulted in an increased efficiency of iontophoretic
transport. This was in agreement with the observations by Del
Terzo et al.,[29] who obtained a similar result with ionized
n-alkanoic acids.

Transport pathways

In the literature different iontophoretic transport routes have
been proposed: the transport route across the appendageal
structures, such as hair follicles and sweat glands; and the
transport route via the intercellular route in the skin.[44–47] In
agreement, fitting the iontophoretic flux using a model with
two release constants also suggested the presence of at least
two different transport routes across human skin during
current application. In the initial time period of iontophoresis
transport across the more permeable pores, possibly the
appendages, with a faster release to the acceptor phase
(described by KR2) was the major contributor to the total
iontophoretic flux. However, when the iontophoresis pro-
ceeded, the contribution of the second penetration route,
suggested as the intercellular pathway, with a slower release
(described by KR1) increased. This resulted in an increase in
the total iontophoretic flux (Figure 5). Modelling transport
across human stratum corneum and dermatomed skin post
iontophoresis revealed that the release from the skin was best
described by KR2. This suggested that the appendageal route
post-iontophoresis was still the predominant route. Similar
observations by Turner and Guy[47] reported that the
predominant transport route for the ionized calcein after
iontophoresis pretreatment was via the pores.

Comparing the skin release constant KR2 for human
stratum corneum and dermatomed skin transport, it was

observed that KR2 was smaller during transport across
dermatomed skin (Table 3). This could at least partly be
attributed to the presence of hydrophilic regions and negative
charged cell membranes at pH 7.4 in both the epidermis and
the upper part of the dermis, slowing down the partitioning of
the compounds from the skin to the acceptor phase.

Physicochemical considerations
for iontophoretic delivery

In the literature several in-vitro methods have been proposed
as first screening methods for transdermal iontophoretic
delivery. The molecular descriptors for iontophoresis in these
methods were charge, molecular weight/volume and ionic/
electrophoretic mobility.[28,33,48,49]

As the electrophoretic mobility was reported as a good
descriptor for the EM-flux, in this study, the EM-flux after 9 h
of iontophoresis was calculated using equation 2.[28,33] The
passive flux was considered to be negligible. For the transport
studies across stratum corneum the EM-flux correlated linearly
with the electrophoretic mobility (R² = 0.85) (Figure 6c).

Although capillary electrophoresis to estimate the EM-flux
at 9 h was a good screening method for transdermal
iontophoresis, this single end-point approach had some
limitations. Firstly, this approach assumed that the end-point
was representative for the entire iontophoretic flux, also
before and after this point. However, it did not account for the
shape of the curve. Secondly, it was also important to
understand the influence of the physicochemical properties on
the different transport parameters, such as the zero-order mass
input and the release constants. This information was
important to make a realistic extrapolation towards in vivo.
The iontophoretic mass transfer was driven by a potential
gradient. This implied that besides the current density and the

Table 3 The parameter estimates of data fitting the in-vitro iontophoretic delivery across human stratum corneum and dermatomed human skin of

various 2-aminotetralins and chromanamine-based dopamine agonists

Skin type Compound I0/S KR1 (slow) KR2 (fast) Pass Tlag

(nmol/cm²/h) (/h) (/h) (nmol/cm²/h) (h)

n Mean SE Mean SE Mean SE Mean SE Mean SE

Human stratum corneum 5-OH-EPAT 6 176.56 9.33 0.06 0.02 1.43 0.13 3.17 0.58 ND

5-OH-MPAT 5 178.13 6.36 0.02 0.02 1.63 0.09 3.33 0.23 ND

5,6-di-OH-MPAT 5 133.28 5.11 ND 1.38 0.23 ND 0.08 0.13

5,6-di-OH-DPAT 5 91.25 1.86 0.43 0.12 1.19 0.07 2.77 1.28 0.06 0.05

8-OH-DPAC 7 113.91 2.55 0.09 0.01 1.41 0.04 8.82 1.72 0.14 0.05

5-OH-DPATa 6 119.69 8.67 0.25 0.15 1.39 0.14 4.47 0.74 0.06 0.07

Rotigotine.HClb 6 45.31 0.42 0.32 0.10 0.96 0.06 20.30 0.39 ND

Dermatomed human skin 5-OH-EPAT 6 99.22 2.25 1.27 0.69 0.46 0.04 0.02 ND 0.27 0.01

5-OH-MPAT 7 118.91 1.49 0.47 0.11 0.54 0.04 4.64 1.32 0.26 0.08

5,6-di-OH-DPAT 6 116.25 2.66 0.08 0.02 0.63 0.02 10.10 1.12 0.21 0.05

8-OH-DPAC 7 101.88 1.12 0.08 0.04 0.53 0.04 ND 0.47 0.08

5-OH-DPAT 4 95.16 1.43 0.73 0.33 0.56 0.06 5.15 2.99 0.22 0.03

Rotigotine.HClb 6 35.31 3.33 0.03 0.02 0.28 0.04 22.70 1.62 ND

Iontophoretic delivery; 500 mA/cm2. The intrinsic driving force corrected for the surface area (I0/S), the skin release constants (KR1 and KR2), the

passive driving force post-iontophoresis corrected for the surface area (PPI/S; Pass) and the lag time (Tlag) are depicted. The donor concentration was

3.9 mM. Results are presented as population mean ± standard error of the estimate (n = 4–7). a,bData was adapted from literature.[14,40] ND, not

determined because the parameter was constrained to 0.
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donor composition, which were kept constant in the transport
studies, the zero-order mass transfer was dependent on the
electrophoretic properties of the molecule. It was observed
that the zero-order mass input, corrected for the surface area
(I0/S), was linearly correlated to the electrophoretic mobility
(R2 = 0.93) (Figure 6a). This also meant that the steady-state
flux, calculated using equation 8, could be predicted by the
electrophoretic mobility.

Previous studies demonstrated that the transport efficiency
decreased with increasing molecular weight.[24–26] For
instance Lai and Roberts[24] considered in the ionic mobi-
lity-pore model that the logarithm of the permeability
coefficient decreased linearly with increasing molecular
weight. If our interpretations were correct and KR2 described
the release during appendageal transport, it could be expected
that the release from these pores into the acceptor phase was
size-dependent. Plotting the fast release constant KR2 against
the molecular weight confirmed this size dependency. The fast

release constant KR2 was reduced linearly with increased
molecular weight (Figure 6b; R² = 0.90).

Although not fully understood, the lipophilicity of the
molecules could be of importance for the transport efficiency
and transport pathway. For instance Jadoul et al.[50] showed
that fentanyl, a relatively lipophilic molecule, was distributed
across the whole human stratum corneum, while the more
hydrophilic thyrotropin releasing hormone was mainly
localized in the pores after iontophoresis. In analogy, our
observations showed that the relative contribution of the two
different transport pathways was dependent on the lipophili-
city of the solute. For the more lipophilic compounds,
rotigotine and 5-OH-DPAT, a relatively high KR1 value
was observed, while for the more hydrophilic compounds KR1

remained small. For the most hydrophilic compound, 5,6-di-
OH-MPAT, even a negligible value for KR1 was observed. An
exception was made for 5,6-di-OH-DPAT, since other
mechanisms played a role in its iontophoretic transport.
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Due to the increased membrane complexity of derma-
tomed human skin, the aforementioned relationships between
the physicochemical properties (electrophoretic mobility,
molecular weight, clogP) and the transport parameters (EM-
flux, I0/S, KR2, KR1) were not so evident, contrasting the
observations for transport across human stratum corneum.
For instance across dermatomed skin, assuming that the
relative electromigrative contribution was similar to that
across stratum corneum, the linear correlation between the
EM-flux and the electrophoretic mobility was not so clear
(Figure 6d) (R² = 0.78). Dermatomed human skin includes
the stratum corneum, the viable epidermis and a part of the
dermis, and therefore the complexity of the transport
membrane is augmented. Further research is necessary to
fully understand the underlying transport mechanisms
involved in epidermal transport. A larger set of molecules,
covering a broader range of electrophoretic mobilities
presumably would increase the predictive value of capillary
electro-phoresis for the EM-flux across dermatomed skin, as
was observed for a series of dipeptides.[28,33] These dipeptides
were grouped in three clusters, where the correlation within
the groups was far less than the overall correlation, including
all 11 peptides. Nonetheless the electrophoretic mobility and
the corresponding EM-flux across dermatomed human skin,
observed for the dopamine agonists in this study, were similar
to the values obtained for the dipeptides at pH 7.4.[28,33]

Next to identifying the physicochemical-transport para-
meter relationships, compartmental modelling can be very
useful for extrapolation towards the in-vivo situation.
Assuming transport across human stratum corneum in vitro
is representative for transport in vivo in humans, combining
these transport parameters with pharmacokinetic parameters,
applying nonlinear mixed effect modelling, simulations
could be made of the iontophoretic flux in vivo. Nugroho
et al.[16] demonstrated that for transdermal iontophoresis
such an extrapolation from in-vitro to in-vivo was possible in
rats, predicting the plasma concentration and even the
pharmacodynamic effect.

Conclusions

This study has shown that small structural changes affect the
solubility, electrophoretic mobility, the iontophoretic delivery
efficiency and the contribution of the transport route during
iontophoresis. Increasing the hydrophilicity by addition of an
extra OH-group on the phenyl ring (5,6-di-OH-MPAT and
5,6-di-OH-DPAT) did not result in an increase in solubility
nor transport efficiency. On the other hand solubility and
iontophoretic transport could benefit from reduction in the
alkyl groups at the nitrogen. In addition the electrophoretic
mobility and the molecular weight can be applied to estimate
the zero-order mass input I0/S and KR2, respectively. The
clogP might be helpful in determination of the relative
contribution of the different transport pathways by estimation
of KR1, although further research is required to define a clear
relationship. With the estimated parameters, using the
proposed compartmental model, it will be possible to simulate
the iontophoretic flux profile across human stratum corneum
in vitro. Simulations can be a helpful tool in designing future

experiments, giving the opportunity to explore different flux
profiles and different study designs.
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